MATH 141: Midterm 1

Name: \qquad

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

Problem	Score
1	Points
2	10
3	10
4	10
5	10
6	10
7	10

1. If

$$
f(x)=x^{2}-x \quad g(x)=3 x^{2}-x+1 \quad h(x)=\sin (x) \quad j(x)=2^{x}
$$

Evaluate, expand, and/or simplify the following:
(a) $h\left(\frac{\pi}{6}\right)$
(b) $j(1) \cdot h(0)$
(c) $f(x) \cdot g(x)$
(d) $f(x+h)-f(x)$

2. Short answer questions:

(a) Explain in English the intuition (not the definition) behind the symbols $\lim _{x \rightarrow a} f(x)=L$.
(b) True or false: We can simplify

$$
\frac{3(x-2)^{2}(x+3)-4(x+2)(x-3)^{2}}{5 x(x-3)^{2}(x-2)-4(x+3)}
$$

by crossing out the $x+3$.
(c) If $f(x)=x-x^{2}$, evaluate $f(x+h)$ and fully expand + simplify.
(d) If $F(x)=\sin ^{3}\left(x^{2}\right)$ find three functions f, g, h where $f \circ g \circ h=F$.
3. Suppose

$$
f(x)= \begin{cases}x & x<1 \\ -x^{2}+1 & x \geq 1\end{cases}
$$

(a) Sketch a graph of $f(x)$.

(b) What is $f(1)$?
(c) Does $\lim _{x \rightarrow 1} f(x)$ exist? If it does, find the limit. If not, explain why.
4. Perform the given instruction. Remember to use the relevant laws/properties and fully simplify.
(a) Expand and simplify: $\frac{3(x+h)^{2}-1-\left(3 x^{2}-1\right)}{h}$
(b) Rationalize the numerator (remember to simplify): $\frac{\sqrt{x+h}-\sqrt{x}}{h}$
(c) Simplify: $\frac{\frac{2}{x^{2}+x}-\frac{3}{\sqrt{x}}}{\sqrt{x}+\frac{1}{x}}$
(d) Expand: $\left(x^{3}+6\right)(2 x+1)-\left(x^{2}+x-2\right)\left(3 x^{2}\right)$
5. Draw the graph of a function which satisfies the following:
(a) $f(0)=1$
(b) $f(2)=1$
(c) $\lim _{x \rightarrow 0} f(x)=1$
(d) $\lim _{x \rightarrow 2^{-}} f(x)=0$
(e) $\lim _{x \rightarrow 2^{+}} f(x)=2$
(f) $\lim _{x \rightarrow-2} f(x)=-\infty$

6. Consider this limit:

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h}
$$

(a) Try using Limit Laws to find the limit. What ends up happening?
(b) Now find the actual limit.
7. Use the mathematical definition of continuity to prove the function

$$
f(x)= \begin{cases}x(x-1) & x<1 \\ 0 & x=1 \\ \sqrt{x-1} & x>1\end{cases}
$$

is continuous at the number $x=1$.

